
The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-05-00107

The Application
Programming Interface
For The PVMEXEC
Program And Associated
Code Coupling System

Walter L. Weaver III

March 2005

INL/EXT-05-00107

 The Application Programming Interface for
the PVMEXEC Program and Associated Code

Coupling System

Walter L. Weaver III

March 2005

Idaho National Laboratory
Idaho Falls, Idaho 83415

Prepared Under DOE/NE Idaho Operations Office
Contract No. DE-AC07-05ID14517

ii

iii

ABSTRACT

This report describes the Application Programming Interface for the PVMEXEC program and the
code coupling systems that it implements. The information in the report is intended for programmers
wanting to add a new code into the coupling system.

iv

v

CONTENTS

1 Introduction ... 1

1.1 Background ... 1

1.2 General Principles .. 2

1.3 Description of PVM ... 2

1.4 Responsibilities of the PVMEXEC Program ... 3

2 Taxonomy of Coupling .. 3

3 PVMEXEC Application Programming Interface .. 4

3.1 Initialization Phase of Coupled Simulation .. 5

3.1.1 Restart Control and Simulation Start Time ... 7

3.1.2 Coupling Data Specification ... 8

3.1.3 Initial Data Exchanges ... 12

3.2 Transient Phase of Coupled Simulation ... 15

3.2.1 Time Step Selection and the Production of Output ... 15

3.2.2 Data Exchanges During Time Steps .. 17

4 Summmary ... 21

5 References ... 21

Appendix A Message Tags ...A-1

Appendix B Order of Messages ... B-1

1 Initialization Phase Messages .. B-1

2 Transient Phase Messages ... B-3

2.1 Initial Transient Messages .. B-3

2.2 Messages During Time Step ... B-4

2.3 Messages At End Of TIme Step .. B-5

2.3.1 Synchronous Coupling .. B-5

2.3.2 Asynchronous Coupling. ... B-6

Appendix C RELAP5-3D© Coupling Data Items ... C-1

1 Explicit Thermal-hydraulic Coupling .. C-1

2 Semi-implicit Thermal-hydraulic Coupling. ... C-4

3 Kinetics Coupling .. C-7

4 Control System Coupling .. C-10

vi

1

1 Introduction

The purpose of this report is to document the Application Programming Interface (API) of the
PVMEXEC computer program. The PVMEXEC program facilitates the coupling of several different
simulation codes for the unified analysis of a system. The current application of the PVMEXEC code is for
the simulation of nuclear reactor power plants. The PVMEXEC code is a general purpose code in the sense
that it can be used to couple any set of simulation codes for any purpose. Any code that implements the
coupling API can be used in a coupled simulation. The purpose of this report is to describe how a code
must be modified to allow it to be used in a coupled simulation being controlled by the PVMEXEC code.

1.1 Background

Several codes have been developed for the analysis of nuclear reactor power plants. These codes
focus on the simulation of the reactor core, the primary cooling system, and the secondary cooling systems.
Other codes have been developed for the analysis of the containment systems or for the analysis of severe
accidents. These codes focus on the thermal-hydraulic behavior of the systems being simulated. Still other
codes have been developed for a detailed analysis of the neutronic behavior of the reactor code or of the
power plant control and safety systems. Depending on the primary focus of a system simulation code, e.g.,
the thermal-hydraulic behavior of the system, it will usually have simple models for other aspects of the
simulation, i.e. point kineitcs for the kinetics, and trips and simple control models for the control and safety
systems.

The PVMEXEC code and the coupling system that it implements was developed so that the most
appropriate simulation code can be used to model that part of the reactor system for which it was

developed, e.g., a thermal-hydraulic code for the fluid behavior in the reactor core (such as COBRA1), a
different thermal-hydraulics code to the simulation of the primary and secondary cooling systems [such as

RELAP5-3D©2, TRAC-PWR3, or TRACE(TRAC-M)4], a kinetics code for the simulation of the

neutronic behavior of the reactor core (such as NESTLE5 or PARCS6), and a containment simulation code

(such as CONTAIN7 or MELCOR8) for the simulation of the reactor containment and auxiliary systems.
Each of the coupled codes needs data from the other codes in a coupled simulation. For example, the code
performing the thermal hydraulic analysis of the reactor core needs to know the power generation rate in
the fuel rods in the core. This data is obtained from the reactor kinetics code. The kinetics code in turn
needs to know the state of the fluid in the core region of the reactor system. This data is obtained from the
thermal-hydraulics code that is modeling the behavior of the coolant in the reactor core. These data are
exchanged using a message passing system. If an analyst wishes to use a particular code as part of the
coupled simulation, it must be modified to implement the message passing system. This report describes
the functional requirements of the message passing (or coupling) interface. These requirements are
embodied in the messages that are exchanged between the PVMEXEC program and the simulation codes.

The Parallel Virtual Machine9 (PVM) software library is used to accomplish the physical transfer of data
between the PVMEXEC program and the simulation codes and between the simulation codes.

2

1.2 General Principles

This section describes the general principles used in the design of the coupling system as
implemented by the PVMEXEC program. First, the coupling system as embodied by the PVMEXEC
program and the modified simulation codes is a batch simulation system. This means that once a coupled
simulation has been initiated, it should proceed to completion without user intervention, although user
interaction with the simulation codes is not precluded. The simulation is expected to terminate at the end of
the simulation or fail gracefully if any of the simulation codes encounter difficulties from which it cannot
recover. Second, any message sent from or received by a simulation code must be acknowledged to the
sender or receiver. This handshaking helps keep the simulation codes synchronized. Thirdly, each message
has a wait time associated with it so that if a simulation code is waiting to receive a message, it will not
wait indefinitely thereby never terminating gracefully. Finally, the data items (or macros that are expanded
to a list of data items) that are to be exchanged between any two simulation codes are listed twice in the
input file of the PVMEXEC program, once in the specification of the message that sends the data items and
once in the specification of the message that is to be received. This is needed because a data item
represents data that is located in a single location in the complete system model but is represented (stored)
in two different coupled models of the system in a coupled simulation. Each of the couled simulation
models needs to know what the data item represents in it’s simulation model.

1.3 Description of PVM

This section provides a general description of the PVM message passing methodology and is not

intended to replace the detailed PVM documentation9. The PVM software implements a general message
passing methodology. The entities (tasks in PVM parlance) passing messages back and forth may be
executing on the same host or may be communicating with each other over a network. The host’s being
used may be of same type of architecture (all PC’s or all DEC Alpha’s) or may be different architectures (a
PC communicating with a DEC Alpha). The PVM software handles all of the details of the physical
exchange of the data so that the programmer may concentrate on the data being exchanged to implement
his computational algorithm. The PVM software is implemeted in the C programming language but has
wrapper functions that implement a FORTRAN interface so that the C function or subroutine may be
called using FORTRAN semantics. Each computational process in a coupled simulation is assigned a
unique task identification number (a tid) and each message is assigned a message identification number (a
message tag) so that a specific message may be directed to a specific process. Messages are sent by
initializing a buffer (i.e., reserving storage for the data to be sent), loading the data into the buffer, and then
sending the messsage by specifying the message tag for the message and the task identifier for the intended
receiver of the message. The receiver is expected to check for messages by specifying the message tag and
the task identifier of the sender to the PVM software. Once the receiver is notifed by the PVM software
that the message has been received, the receiver is expected to unload the data from the PVM buffer into
his own computational database.

3

1.4 Responsibilities of the PVMEXEC Program

The PVMEXEC code has several responsibilities in performing a coupled computation. The
PVMEXEC code must start up each of the simulation codes. It tells each of the simulation codes what data
they are to send and to whom to send the data. It specifies what data to receive and from whom to receive
the data. It coordinates the production of printable output, plottable output, and restart data, so that the
output of the several simulation codes occur at the same simulation times. It may coordinate the time step
sizes used by the several simulation codes depending upon the type of coupling being used for the
simulation. Finally, it coordinates the graceful termination of a simulation, both for normal and abnormal
terminations.

2 Taxonomy of Coupling

This section describes the different types of coupling that can be used for coupled simulations. There
are two dimensions in the classification of coupling type. The first dimension specifies the way in which
the time steps are chosen by the simulation codes. There are two types of coupling within this dimension,
synchronous and asynchronous. In synchronous coupling, the simulation codes all use the same time step
sizes and perform the same advancement at the same time. In asynchronous coupling, the simulation codes
are free to choose their own time step sizes subject to the restrictions imposed by the requirement to
produce restart data at the same simulation times and to exchange data at fixed intervals during the
simulation. The second dimension of coupling classification is the type of mathematical solution algorithm
being used by the coupled simulation. Solution algorithms are classified as explicit, semi-implicit, and
fully implicit. Some types of solution algorithms are inherently synchronous like the semi-implicit and
fully implicit solution algorithms while others such as an explicit solution algorithm may be either
synchronous or asynchronous. The second dimension of coupling type can be further subdivided based on
the part of the system being modelled, i.e., thermal-hydraulic coupling for modeling of the fluid portions of
the system, kinetics coupling for the simulation of the power production in the system, and control systems
coupling for the simulation of the reactor control and protection systems. Therefore there may be explicit,
semi-implicit, or fully implicit thermal-hydraulic coupling; explicit, semi-implicit, or fully implicit
kinetics coupling, etc.

Explicit coupling is characterized by data that has been computed by one simulation code in a
particular time advancement being used by another simulation code in subsequent advancements. One
code may compute the pressure in a volume and the other code will use that pressure as a boundary
condition during its time advancements. Explicit coupling means that the value remains constant (is
explicitly known) while being used by the other code. Semi-implicit coupling is characterized by data
being computed by one simulation code during an advancement and that data being used by another
simulation code during the same advancement. The data being used by both codes also allows for the effect
of changes to the state of that portion of the system being simulated by one simulation code to be felt in
that portion of the system being simulated by the other simulation code during the same time advancement.
One further wrinkle in explicit coupling concerns the data at the coupling locations between the two
simulation domains. In thermal-hydraulic coupling, pressure boundary conditions may be exchanged
between the two codes and then both codes compute the flow rates of mass and energy across the

4

boundaries. These flow computations may be done in parallel since each code has all of the information
needed to advance its solution, hence the name parallel explicit coupling. However, there is nothing to
ensure that the flow rates computed by the two simulation codes at the same physical location in the
simulated system will have the same value. This implies that the amount of mass (or energy) that leaves
one computational domain will not be the same as the amount of mass (or energy) that enters the adjacent
computational domain. An alternate way of explicitly coupling two computational domains is for only one
of the codes to compute the flow rates between the domains and for the other code to use the flows rates as
its boundary condition. This implies that the code computing the flow rates between the domains must
compute the flow rate first and the other code must wait for the flow rates to be computed before it can
advance its solution. This imposes an order on the computations; they must be done is sequence, hence the
name sequential explicit coupling. The coupling is still explicit, because data from the one code is held
constant while being used by the other code.

The PVMEXEC code implements a subset of coupling types. Within the asynchronous dimension,
only explicit thermal-hydraulic coupling has been implemented. Within the synchronous dimension,
explicit and semi-implicit thermal-hydraulic coupling, explicit kinetics coupling, and explicit control
systems coupling have beem implemented. Within explicit thermal-hydraulic coupling, both parallel and
sequential coupling are allowed. Asynchronous explicit kinetics coupling and asynchronous explicit
control systems coupling are planned to be implemented in the future. Strictly speaking, the kinetics and
control systems coupling are sequential explicit synchronous coupling. The thermal-hydraulic
advancement is performed first, then the kinetics model is advanced during the same time step using the
results of the thermal-hydraulic advancement. The same is true for the control systems coupling. The
thermal-hydraulic and kinetics models are advanced, then the control systems model is advanced during

the same time step using the results of the thermal-hydraulic and kinetics model advancement. Table 2.0-1
shows the types of coupling that have been implemented by the PVMEXEC program.

3 PVMEXEC Application Programming Interface

The execution of a simulation code in the context of a coupled simulation under the control of the
PVMEXEC program consists of two phases of computation. The first phase of a coupled computation
consists of code startup, code initialization, and coupling initialization. This phase of a coupled
computation is the same for all modes of coupling. The second phase of a coupled computation consists of

Table 2.0-1 Types of Coupling

Type

Thermal-Hydraulic

Explicit
Kinetic

Explicit
Control
System

Explicit
Semi-Implicit

Parallel Sequential

Synchronous X X X X X

Asynchronous X X NA not
implemented

not
implemented

5

the time advancements and is different for the several types of coupling. The common startup and
initialization phases of a coupled computation will be described first and the several types of time
advancements will be described individually. There are similarities between the several different types of
time advancements, particularly in the production of output, that will only be described once at the
beginning of the sections of this report that describe the time advancements.

3.1 Initialization Phase of Coupled Simulation

A user performs a coupled simulation by executing the PVMEXEC code. The PVMEXEC code
reads its input file to determine which hosts are to be used to perform the coupled computation and to
determine which codes are to be executed on each of the hosts. The PVMEXEC program initiates the
execution of the simulation codes on the designated hosts using functions in the PVM software library.
Each individual code in the coupled simulation is executed as specified in the input file of the PVMEXEC
program. The specification in the PVMEXEC input file contains the name of the executable file for the
simulation code along with any command line parameters that are to be used by the simulation code. The
PVMEXEC program adds an additional command line parameter to the end of the command line contained
in the input file. This parameter is ’-PVM’. This command line parameter has been added so that the
simulation code may check to see if it has been executed in coupled mode. Some codes are unable to
examine the command line and ignore it. There is another way that a simulation code can determine if it
has been executed under the control of the PVMEXEC code. It can use a PVM function to determine if it
has a ’parent’ process. In PVM parlance, a ’parent - child’ relationship exists between the codes in a
coupled simulation. The PVMEXEC code (or its surrogate) is the parent process and the individual
simulation codes are child processes. In either case, it is the first responsibility of a simulation code to
determine whether or not it is being executed in coupled mode. If the code is being executed in coupled
mode, the simulation code needs to determine the task identifier of its parent and its own task identifier
using calls to PVM functions (’pvmfparent’ and ’pvmfmytid’, respectively). These functions are the
FORTRAN wrappers around the underlying C routine. This report will use the FORTRAN interface to the
PVM software functions when specifying function names. The C interface can be found in the PVM

documentation9. Once a simulation code knows the task identifier of its parent, it must listen to receive a
message with messsage tag 7001 from its parent. This message contains a single integer, the task identifier
of the PVMEXEC process. The simulation code must acknowledge the receipt of the 7001 message by
sending its parent a message with message tag 7001 containing a single integer, the task identification
number for the simulation code. Appendix A contains a list of all of the messages sent or received by the
PVMEXEC code listed in numerical order along with a description of the data items in each message.
Appendix B contains another list of all of the messages sent or received by the PVMEXEC code listed in
the order in which they are sent by the PVMEXEC program.

There are several housekeeping details that must be explained before the message exchange
described above can be implemented in a new simulation code, new in the coupling sense. These details
are PVM and implementation specific. First, the sender of a message must specify the format for the
message. There are two formats for data exchange between codes, raw and xdr. Raw format can be used
for data exchanges between hosts of the same architecture (PC to PC) and xdr format must be used for data

6

exchanges between hosts of different architectures (PC to DEC Alpha). Xdr is the default data format for
data exchanges. Second, PVM has established several data types that should be used to exchange data
between processes. The PVMEXEC program and the coupling methodology uses the PVM data types
INTEGER4 for integer data (four byte integers), the PVM data type REAL8 for floating point data (eight
byte real numbers), and the PVM data type STRING for character strings. The receiver of a message does
not need to worry about the data format because the sender specifies the format and the PVM routines that
receive the data manage the conversion to the receivers format. However, the receiver needs to know the
number of data items and their types when fetching the data out of the receive buffer. The PVM software
library contains macro definitions in a header that should be ’included’ in all of the routines that access the
PVM library routines. The first message with message tag 7001 is sent in default data format by the
PVMEXEC program, and contains a single four byte integer (PVM data type INTEGER4). The message
acknowledgement should be sent to the parent in default format and also contain a single four byte integer.

The next bit of housekeeping is to ask the PVM software to send the requestor a message with
message tag 10001 if the PVMEXEC program terminates during a simulation. This is accomplished by a
call to the PVM function ’pvmfnotify’. The PVM function ’pvmfnotify’ can send messages for many types
of events. The event that we need to know about is if the PVMEXEC program has terminated. This allows
the simulation code to shut itself down if there is a problem with the PVMEXEC program. The simulation
code should periodically query the PVM system periodically to see if a message with 10001 has been
received so that it can shutdown gracefully if such a message is received. The simulation code should also
periodically check to see if a message with message tag 10003 has been received. This message is sent to
all simulation codes in the coupled simulation by the PVMEXEC program if one of the simulation codes
terminates abnormally, e.g., fails with a floating point exception, etc.. Finally, the simulation code is
expected to send a message to the PVMEXEC program with message tag 10002 if the wait time is
exceeded while waiting to receive a message from another simulation code, either to receive data from the
other simulation code or to receive an acknowledgement from the other simulation code that the data it sent
has been received by the other simulation code. A default wait time of at least 60.0 sec should be used by
each simulation code at the beginning of the simulation. A global wait time will be defined by the
PVMEXEC program in one of the initial messages to the simulation codes. The PVMEXEC code will
broadcast (send to all child processes) a 10003 message if it receives a 10002 message from any of the
simulation codes. These messages ensure that the coupled simulation will be terminated if any of the
simulation codes or the PVMEXEC program fail. This requirement of notifiying the PVMEXEC program
in the event of a timeout (in a message with message tag 1002) and of periodically checking for messages
with message tag 10001 and 10003 imply that the simulation code should check for messages 10001 and
10003 while waiting for other messages. This will help keep the simulation codes synchronized and avoid
a deadlock, e.g. waiting for a message from a simulation code that has failed.

Once the initial data exchange with the parent has been acomplished and the simulation code has
received the task identifier of the PVMEXEC code, the simulation code can begin to process its input file.

7

3.1.1 Restart Control and Simulation Start Time

It is assumed that a coupled simulation run is either the first execution of a simulation or is the
extension of a previously performed simulation (i.e., a restart). Messages must be received from the
PVMEXEC program early in the processing of input data that specify whether this is a new simualtion or a
restart run. The first control message from the PVMEXEC program is contained in a message with
message tag one. This message contains the following data. The first data item is an integer that specifies if
the process is synchronously or asynchronously coupled. This is followed by a real number specifying the
start time of the simulation. Start times are normally zero for an initial run and the restart time for a restart
but the start time can be reset for both initial runs and restart runs using this value. The next data item in the
message is the restart time for a restart run. This time specifies where a previous run is to be resumed. A
value of zero specifies that this is a new simulation and not a restart run. A value of -1.0 denotes that the
restart is to be performed from the last set of restart data in the restart file and a value greater than zero
specifies the simuation time on the restart file from which to initialize this run. The default values for both
the start time and the restart time are zero denoting a new run starting from time zero. This is followed by

an integer that is RELAP5-3D© specific and can be ignored by other simulation codes. Next comes an
integer that specifies the number of characters in a PVM string variable followed by the string of the
specified length. If the simulation is a new simulation, the codes are expected to write the character string
to the beginning of their restart file. If the run is a restart run, the simulation codes are expected to compare
the string in the message to the string in their restart file. The simulation codes are expected to
acknowledge this message from the PVMEXEC program with a message with message tag one containing
the following data. The first data item is a integer restart status flag and the second data item is a real
number specifying the start time determined by the simulation code. A restart status other than zero
denotes an error terminating the coupled computation. A value of one denotes that the code cannot perform
a restart at the time specified by the PVMEXEC program because no restart data exists for the time
specified. A value of two means that the string found on the restart file does not match the string specified
by the PVMEXEC program. If a task returns a restart status of two, the message from the task must contain
two additional variables, an integer specifing the length of a string variable and a string variable containing
the string found on the restart file. This string is printed on the printed output file of the PVMEXEC
program and can be used to detemine why the incorrect restart file has been specified to the task.

If the restart status is zero, either because the simulation is a new run or because the correct restart
file and restart record have been found, the start times reported by the several codes are compared to
determine if they are the same. For initial runs, the simulation code should set its start time to the start time
contained in the message from the PVMEXEC program and return the same value. For restart runs, the
start time returned by the simulation codes depends upon how the restart time and start time are specified
in the input file of the PVMEXEC program. The restart time can be specified as -1.0 or as a positive real
value and the start time can be set to a positive value. If the restart time is specified in the input file of the
PVMEXEC program, the start time is set to the restart time if the start time is not specified in the input file
of the PVMEXEC program, otherwise the start time sent to the simulation codes is the start time specified
in the input file. This leads to several different combinations of restart time and start time. If the restart
time is specified as -1.0 and the start time is not specified, the start time is set to -1.0. These values denote

8

that the restart is to occur from the last set of restart data in the restart file and the start time is to be set to
the restart time, whatever value the simulation code has found in its restart file. If the restart time is
specified as -1.0 and the start time is specified in the input file of the PVMEXEC program, the simulation
code is to restart from the last set of restart data in the restart file and to replace the simulation time found
in the last set of restart data with the value specified by the PVMEXEC program. If the restart time is a
value greater than zero and the start time in not input in the input file of the PVMEXEC program, the
simulation code is to restart from the restart data in the restart file at the specified time and is to use the
value of the restart time as the start time (they will be the same in the message from the PVMEXEC
program). Finally, if the restart time is a number greater than zero and the start time is specified in the input
file of the PVMEXEC program, the simulation code is to restart from the data in the restart file at the
specified restart time and is to replace the simulation time found on the restart file with the value contain in
the message from the PVMEXEC program. The PMVEXEC code compares the start times reported by all
of the simulation codes and then sends another message with message tag one. This message contains a
single integer, the global restart status. A value of zero denotes that there are no errors and that the
computations should be continued and a value of one denotes an error condition and that the codes should
terminate gracefully. An acknowledgement containing the task identifier must be sent to the PVMEXEC
program to acknowledge the receipt of the global restart status. The restart status flag and the start time
returned by the simulation codes are used to ensure that start times are the same if the user specifies the
restart time as -1.0 and does not input the value of the start time in the input file of the PVMEXEC
program.

If there are no restart errors, the next message from the PVMEXEC program is a message with
message tag two. This message contains a single integer, the number of threads that this task should use if
it can be executed in parallel. The message must be acknowledged with a message with message tag two
containing the task identifier of the receiving task even if the simulation code cannot be executed in

parallel. RELAP5-3D© may be executed using multiple threads and this message overrides the default

number of threads that RELAP5-3D© will use for its execution.

3.1.2 Coupling Data Specification

 After reading and processing its input data, the simulation codes must receive messages from the
PVMEXEC program that specify the data that they are to exchange with the other simulation codes. The
first data specification message has message tag 1000. This message contains two data items, a real
number specifying a global wait time that is to replace the default wait time of 60.0 seconds and an integer
(zero or one) that can be used to activate debugging output in the simulation code. The global wait time is
used for the receiving of all messages unless specifically overwritten for individual messages. The
debugging flag is sent to all coupled processes and can be set in the input file for the PVMEXEC program.
This message is to be acknowledged by a message to the PVMEXEC program with the same message tag
(message tag 1000) and must contain a single integer, the value of the task identifier of the simulation
code.

9

Next come a series of messages that specify the data that is to be sent or received for the different
types of coupling. Message 1001 specifies the number of messages that are to be sent or received by the
simulation code for explicit thermal-hydraulic coupling. Message 1001 contains two integers, the number
of messages to be sent for explicit thermal-hydraulic coupling and the number of messages that are to be
received for explicit thermal-hydraulic coupling. This message is acknowledged by sending a message to
the PVMEXEC code with message tag 1001 that contains a single integer, where the integer should be the
task identifier of the simulation code. Although strictly speaking, any integer may be used in the
acknowledgement to this and all other received message except the message with message tag 1000, it is
recommended that the tid of the task receiving the message be used. The number of messages to be sent or
received for explicit thermal-hydraulic coupling are then used to receive multiple messages with message
tags 1002 and 1003, message tag 1002 for the send messages, and message tag 1003 for the receive
messages. Each of these messages are to be acknowledged to the PVMEXEC program using message tags
1002 and 1003, respectively, where each acknowledgement message contains a single integer, the task
identifier of the simulation code as recommended.

Messages with message tag 1002 contain the following data. The first data item is an integer that
specifies the message tag to be used when sending the data. This is followed by another integer that
specifies the task identifier of the task to which the data is to be sent. Next comes an integer that specifies
the temporal type of explicit coupling, a value of zero means synchronous explicit coupling and a value of
one means asynchronous explicit coupling. Next comes another integer that specifies the subtype of
explicit coupling being used to couple this simulation code to the other simulation code. A value of minus
one denotes parallel explicit coupling and a values of zero and one denote the leader and follower tasks in
sequential explicit coupling respectively. This is followed by a real number that specifies the wait time for
the receipt of the acknowledgement that the message has been received by the process to which it has been
sent. Next comes an integer that specifies the number of characters in the string that names the data items
to be sent in the message. This is followed by a string of the specified length. The string contains the
identifiers of the data that are to be sent to the other process. The identifiers are simulation code specific
and the simulation code needs to understand the identifiers as contained in the string. Only the simulation
code needs to understand the meaning of the identifiers because it is the only entity that must associate the
identifier with the location in memory where the data item is stored. The simulation code uses the
identifiers to access the data and load the values into the send buffer. Examples of identifiers are the pairs

of values used by the RELAP5-3D© code. These pairs consist of the plot/print name of a variable and the

volume or junction identifier of the RELAP5-3D© component containing the specified variable.

RELAP5-3D© also recognizes macro names that are expanded to a list of variables. Appendix C lists the

macros that RELAP5-3D© understands. Each data item to be exchanged between two processes is
specified twice, once for a sending process and once for the corresponding receiving task. Each task needs
to know what the descriptor in a message means, the sending code needs to know how to access the value
of the data item from its database to load it into the send buffer and the receiving task needs to know where
to store the value received into its database after retrieving the data item from the receive buffer. If macros

are used to specify a list of variables for RELAP5-3D©, the other code needs to either implement the same
macro definition or the user must specify each variable individually in the input file of the PVMEXEC

10

program. The message specifications contained in messages with message tag 1002 and 1003 do not
specify the format in which the messages are to be sent for the case of the send messages or the format in
which the acknowledgement is to be sent for the case of the receive messages. It is the responsibility of
each simulation code to determine the proper format for the send messages and the format of the
acknowledgements to the receive messages. There are PVM functions that can be used to determine the
architecture of the host on which the simulation code is being executed and the architecture of the host on
which the other code is being executed. If the architectures are the same, raw mode should be used for the
data exchanges and xdr mode must be used if the architectures are different. Raw mode should be used if
possible because it eliminates the loss of precision for real numbers when using xdr for the conversion of
real numbers between different architectures. The simulation code must determine the format for sending
all of the messages that it sends, either to the PVMEXEC program or to other processes in the coupled
simulation on a task to task basis.

Messages with message tag 1003 describe the contents of receive messages and contain the
following data. The first data item is an integer that specifies the message tag of the message to be
received. This is followed by another integer that specifies the task identifier of the task from which to
receive the data. Next comes an integer that specifies whether the message is for synchronous or
asynchronous explicit coupling. Next comes another integer that specifies the subtype of explict coupling
(parallel or sequential explicit coupling) being used to couple this simulation code to the other simulation
code. This is followed by a real number that specifies the wait time for this message. Next comes an
integer that specifies the number of characters in the string variable that names the data items in the
message. This is followed by a string of the specified length. Like the string in the send messages, the
string contains the identifiers for the data items that are to be received in the message. Each of the
messages must be acknowledged by sending a message with message tag 1003 to the PVMEXEC program
that contains the task identifier of the simulation code.

The next set of messages contain data for semi-implicit thermal-hydraulic coupling. The number of
send and receive messages for semi-implicit thermal-hydaulic coupling is contained in a message with
message tag 1004. Next follow messages with message tag 1005 that specifiy the send messages followed
by messages with message tag 1006 that specify the receive messages for semi-implicit thermal-hydraulic
coupling. Messages with message tag 1005 contain the following data. The first data item is an integer that
specifies the messages tag for the send message. This is followed by another integer that specifies the task
identifier of the task to which to send the data. Next comes a real number that defines the wait time for the
acknowledgement to the send message. This is followed by an integer that specifies the length of the string
containing the identifiers of the data that is to be sent. The message ends with a string of the specified
length. As with the strings for the specification of the data for the explicit thermal-hydraulic coupling,
these strings contain the data specifications for semi-implicit thermal-hydraulic coupling. Each message
must be acknowledged to the PVMEXEC program with a message containing a single integer, the task
identifier of the simulation code.

Messages with message tag 1006 contain the same data as messages with message tag 1005 except
that they specify the data that is to be received for semi-implicit thermal hydraulic coupling. In contrast to

11

explicit thermal-hydraulic coupling, semi-implicit thermal-hydraulic coupling requires two data exchanges
per time advancement instead of a single data exchange per time step. Therefore, the data specifications
contained in the 1005 and 1006 messages must be used to generate another set of send and receive
messages. The message tags to be used by these internally generated messages are the message tags
defined in the 1005 and 1006 messages plus 2000. The task identifiers and wait times are the same for the
implied send and receive messages as contained in the 1005 and 1006 messages. The data identifiers
contained in the strings in the 1005 and 1006 messages are used to determine the data to be exchanged in
the implied send and receive messages. This will be explained further in the Section 3.2.2.2 of this report.

The semi-implicit thermal-hydraulic coupling send and receive message specification messages are
followed by similar messages for the kinetics coupling messages. The numbers of send and receive
message for kinetics coupling are contained in a message with message tag 1007. The kinetics messages
for sending data are defined in messages with message tag 1008 and the kinetics messages for receiving
data are defined in messages with message tag 1009.

Messages with message tag 1008 contain the following data. The first data item is an integer that
specifies the message tag for the send message. This is followed by another integer that specifies the task
identifier of the process to which the data are to be sent. Next comes a real number that defines the wait
time for the acknowledgement to the send message. This is followed by an integer that specifies the length
of the string that defines the data items to be sent in the message. The messages end with a string of the
specified length. The kinetics receive messages are defined in messages with message tag 1009. The
receive messages have the same format as the send messages except that the wait time is for how long to
wait to receive the data rather than for how long to wait for an acknowledgement.

The last set of message contain the specifications for the data exchanges for control systems
coupling. These messages use message tags 1010, 1011, and 1012. The message with message tag 1010
contains the number of control system send and receive messages. The messages with message tag 1011
contain the specification for control system send messages and the messages with messsage tag 1012
contain the specification for control system receive messages. The format of the 1011 and 1012 messages
is the same as the 1008 and 1009 messages.

Once the last messages with message tag 1012 has been received, the simulation code can proceed to
the initialization phase of its startup proceedure. During initialization, the coupled codes exchange data to
define the correct initial state of the coupling components. These exchanges are only performed for
explicit thermal-hydraulic coupling. This is done to be consistent with the data exchange process for the
time advancements for explicit thermal-hydraulic coupling where data are exchanged at the end of an
advancement to prepare for the next advancement. Because there is no previous advancement for the first
time step in a simulation, a data exchange is performed during initialization to emulate the data exchanges
that would have been performed in the non-existent previous time step.

The reader will have noticed that the PVM coupling methodology makes many assumptions about
the sequence of computations that are performed by the simulation codes. The assumed sequence is taken

12

from the sequence of computations performed by the RELAP5-3D© code since the coupling methodology

was originally developed for coupling codes to RELAP5-3D©. It is the programmers responsibility to
ensure that the simulation codes send and receive data at the appropriate times so that the coupled
computation can proceed smoothly. Deadlocks are easily encountered if all codes are waiting to receive
data and no code is sending data or vise-versa. Keeping the codes synchronized in the sense of sending and
receiving data at the appropriate times is the hardest part of adding a new simualtion code to the coupling
methodology.

3.1.3 Initial Data Exchanges

The data exchanges during initialization are coordinated by the PVMEXEC program so that each
code is allowed to send its data to the other codes and the other codes are listening to receive data while the
specified code is sending data. The PVM data exchange methodology as implemented by the PVMEXEC
program behaves like an old style telephone partyline. Only one person can talk at a time and the others
must listen while someone else is talking. This data exchange is coordinated by the PVMEXEC program
sending and the simulation codes receiving control messages from the PVMEXEC program with different
message tags for the different types of explicit thermal-hydraulic coupling and for semi-implicit coupling.

The first data exchange is for synchronous parallel explicit thermal-hydraulic coupling. The
PVMEXEC program broadcasts a series of messages with message tag 8002. This message contains the
task identifier of the task that is to send data. The message is sent to all tasks that are participating in
synchronous parallel explicit thermal-hydraulic coupling and all tasks participating in synchronous parallel
explicit thermal-hydrualic couping are expected to listen for this message. When a task receives this
message, it should determine if the task identifier contained in the message is its task identifier. If the
identifier is its identifier and if it has synchronous parallel explicit thermal-hydraulic send messages in its
message database, it should send the appropriate data to the appropriate task and wait for an
acknowledgement from the receiving task. This is the first data exchange between simulation tasks. The
acknowledgement to messages from the PVMEXEC program consist of a message containing a single
integer value, the task identifier of the acknowledging task. The acknowledgement between simulation
tasks should contain a single integer value, either zero or one, because the value in the message is not
significant, only the fact that a message has been received from the expected task is significant. The task
should keep sending data and receiving acknowledgements until all of its send messages for synchronous
parallel explicit thermal-hydraulic coupling have been sent and acknowledged. It should then send a
message with message tag 8002 to the PVMEXEC program containing its task identifier to signify that it is
finished sending data. When a simulation code receives a message with message tag 8002 that contains the
task identifier of another task, it must examine its message database to determine if it is to receive
synchronous parallel explicit thermal-hydraulic data from the task specified in the message. If it is to
receive data from the specified task, it must listen to receive the data, process the received data, and
acknowledge the receipt of the data to the sending task. It must keep listening until all data has been
received from the sending task and each message has been acknowledged by sending an acknowledgement
to the sending task. Once all data from the designated task has been received and acknowleged, the
receiving task should send a message to the PVMEXEC program with message tag 8002 containing its task

13

identifier. This signifies to the PVMEXEC program that it is finished receiving data from the designated
task. When the PVMEXEC program receives acknowledgements from all of the tasks that are participating
in synchronous parallel explicit thermal-hydraulic coupling that they are finished processing the data that
is to be sent by the designated task, the PVMEXEC program sends the next message with message tag
8002 allowing the next task to send its data to the other tasks participating in synchronous parallel explicit
thermal-hydraulic coupling. This continues until all tasks that are participating in synchronous parallel
explicit thermal-hydraulic coupling have been allowed to send their respective data. Once all tasks that
participate in synchronous parallel explicit thermal-hydraulic coupling have been allowed to send data, the
PVMEXEC program sends a final message with message tag 8002. This message contains the integer zero
and denotes that the data exchanges for synchronous parallel explicit thermal-hydraulic coupling are
finished and that the tasks do not need to listen for more messages with message tag 8002 during
initialization.

The second series of data exchanges is for asynchronous parallel explicit thermal-hydraulic coupling.
These data exchanges are controlled using messages with message tag 8003. The process for the data
exchanges is the same as for the exchanges for synchronous parallel explicit thermal-hydraulic coupling.

The next series of data exchanges is for synchronous sequential explicit thermal-hydraulic coupling.
Sequential explicit thermal-hydraulic coupling implies an order in which the several simulation codes
perform their computations. This order is specified in the input file for the PVMEXEC program. Tasks are
labelled as ’leader’ or ’follower’ tasks. The ’follower’ tasks compute the properties in the ’volume’
components and the ’leader’ tasks compute the properties in the ’junction’ components between the two
computational domains. The ’leader’ tasks need to know the properties in the ’volumes’ before they can
compute the properties in the ’junction’ components (the junction properties are ’donored’ from the
volume properties). Therefore, the ’follower’ tasks are directed to send their ’volume’ data to the ’leader’
tasks first. This exchange of data is coordinated using messages from the PVMEXEC program with
message tag 8004 that contain the task identifier of the task that is to send data. All other tasks participating
in synchronous sequential explicit thermal-hydraulic coupling are expected to listen for the data being sent
by the designated ’follower’ task. The series of 8004 messages is terminated by a message with message
tag 8004 containing a integer value of zero denoting that all ’follower’ tasks participating in synchronous
sequential explit thermal-hydraulic coupling have sent their data. The ’leader’ tasks should then use the
data obtained from the ’follower’ tasks to compute the properties in the coupling ’junction’ components.
Then the data exchange process is repeated with another series of messages with message tag 8004 except
that the ’leader’ tasks are directed to send their data to the appropriate ’follower’ task. This series of
messages is also terminated with a message from the PVMEXEC program with message tag 8004 that
contains the integer zero. This designates the all of the ’leader’ tasks in synchronous sequential explicit
thermal-hydraulic coupling have had a chance to send their data.

The next series of data exchanges is for asynchronous sequential explicit thermal-hydraulic coupling.
The process is the same as that described for synchronous sequential explicit thermal-hydraulic coupling in
the preceeding paragraph except that the control messages from the PVMEXEC program use message tag

14

8005 instead of message tag 8004. This completes the data exchanges for explicit thermal-hydrualic
coupling.

The next set of data exchanges for initialization purposes are exchanges between tasks that are
participating in semi-implicit coupling. The messages are sent (and received) autonomously by the
semi-implicitly coupled tasks and are not under the control of the PVMEXEC program. This is possible
because there is a one to one relationship between tasks that are semi-implicitly coupled tasks and the roles
of each task in semi-implicit coupling determine the order in which messages are sent and received. Each
task in semi-implicit coupling is a ‘master’ task or a ‘slave’ task (See Section 3.2.2.2 for an explanation of
the ‘master’ and ‘slave’ tasks). First, the ‘master’ task sends it’s data to its counterpart ‘slave’ task, waits to
receive the expected acknowledgement, and then listens to receive data from its ‘slave’ task, finishing the
data exchanges by sending its acknowledgement to the ‘slave’ task. The ‘slave’ task first listens to receive
a message from its ‘master’ process, sends an acknowledgement to the ‘master’ task, then sends its data to
the ‘master’ task, then finishing the data exchange by waiting and receiving the acknowledgement from
it’s ‘master’ process.

The last set of data exchanges for initialization purposes are exchanges between tasks that are
participating in kinetics coupling. These messages are exchanged after the initialization of the
thermal-hydraulic models has been finished by the previous exchanges of messages. The messages are sent
(and received) autonomously by the tasks participating in kinetics coupling and are not under the control of
the PVMEXEC program. This is possible because there is a one to one relationship between tasks that are
participating in kinetics coupling and the roles of each task in kinetics coupling determine the order in
which messages are sent and received. Each task in kinetics coupling is a ‘server’ task or a ‘client’ task
(See Section 3.2.2.3 for an explanation of the ‘server’ and ‘client’ tasks). First, the ‘client’ task sends it’s
data (thermal-hydraulic data) to its counterpart ‘server’ task, waits to receive the expected
acknowledgement, and then listens to receive data from its ‘server’ task (power data), finishing the data
exchanges by sending its acknowledgement to the ‘server’ task. The ‘server’ task first listens to receive a
message from its ‘client’ process (thermal-hydraulic data) and sends an acknowledgement to the ‘client’
task. It then uses the data it received from the ‘client’ task to initialize the its kinetics model. It then sends
its data (the initialized power data) to the ‘client’ task, finishing the initial data exchange by waiting and
receiving the acknowledgement from its ‘client’ process.

Once the last series of initialization data exchanges have been performed, the simulation code may
finish its initialization. At the end of the initialization process, each code is expected to send a message to
the PVMEXEC program with message tag 9000. This message must contain three integers. The first
integer is the tid of the task sending the message. The second integer specifies whether the initialization
process has been completed successfully. A value of zero denotes the successful completion of
initialization and a value greater than zero denotes an error condition. The programmer may develop his
(or her) own set of error conditions for each individual simulation code. These values are printed on the
output file of the PVMEXEC program and may be used to diagnose errors. The PVMEXEC program only
tests for zero or nonzero. The third integer in message 9000 denotes whether the simulation code is
prepared to execute a transient. A value of zero means that the simulation code wants to terminate the

15

execution after the initialization phase and a value of one denotes that the simulation code wants to
continue the coupled computation to the transient phase of the computation. Some codes have the ability to
stop after input processing and initialization. Stopping after input processing and initialization is helpful
when developing a new input model for a simulation code or for making sure that the coupling information
contained in the input file of the PVMEXEC program is correct. In any case, the PVMEXEC program
examines the two values from all of the simulation codes and sends a integer run flag to the simulation
codes in a message with message tag 9001. A value of zero means that the computation is to be terminated
and a value of one denotes that the coupled simulation should preceed to the transient phase of the
simulation. The receipt of the message with message tag 9001 completes the PVM initialization related
responsibilities of a simulation code that wishes to be part of a coupled simulation.

3.2 Transient Phase of Coupled Simulation

There are two distinct phases of data exchange during each time step of a transient computation. The
first set of data exchanges control the choice of the time step sizes along with the production of output, and
the second set of data exchanges facilitate the coupled solution algorithms. These two phases will be
discussed separately because the time step selection and production of output is the same for each type of
coupling while the data exchanges during the time step that are used to effect the coupling are different for
the several different types of coupling.

3.2.1 Time Step Selection and the Production of Output

The PMVEXEC program controls the production of output for all types of coupling for the
synchronous mode of coupling and the production of the restart file for asynchronous mode of coupling. It
also controls the time step size for synchronous coupling and the coupling interval for asynchronous
coupling. The production of output and the choice of the time step size are assumed to occur at the end of a

time step before proceeding to the next time step (this is the RELAP5-3D© computational sequence). As
with the initialization of explicit thermal-hydraulic coupling and the production of output, time step
selection must also occur at the beginning of the first time step of a transient computation to emulate the
normal computations that occur at the end of all time steps. It is assumed that a set of output times has been
obtained from the PVMEXEC program during previous time steps for time steps after the first time step in
a simulation run.

3.2.1.1 Production of Output

At the end of a time step, the coupled simulation codes should compare the local simulation time to
the minimum of the set of output times obtained from the PVMEXEC program to determine if any type of
output needs to be generated. The default values of these times should be set to the start time of the
simulation either during initialization or at the beginning of the first pass through the coupling control
logic. This ensures that output will be obtained at the beginning of the first time step of the new simulation
or restart run. There are four types of output that correspond to the types of output produced by

RELAP5-3D©. The output are the minor edit output, the plot output, the major edit output, and the restart
output. Each code may not produce all types of output. All output times are determined by the PVMEXEC

16

program for synchronous mode of coupling while only the restart times are controlled by the PVMEXEC
program for asynchronous coupling. This means that the minor edit, major edit, and plot times are
controlled by the individual simulation codes for asynchronous coupling. The code must check to
determine if an output, restart, or asynchronous coupling interval time has been reached. If an output time
has been reached, the simulation code should produce the desired type of output, if possible (not all codes
produce minor edits, etc.). If the restart time has been reached, the code should write the restart data to the
restart file.

After the specified output has been produced, the codes exchange messages for explicit
thermal-hydraulic coupling if required. These data exchanges are coordinated by the PVMEXEC program
and are explained in Section 3.2.2.1.

After the production of any output or data exchanges for explicit thermal-hydraulic coupling, the
code must listen for a message with message tag 8000 from the PVMEXEC code. This message will
contain eight real values. The values are new minor edit time, new plot time, new major edit time, new
restart output time, new explicit coupling interval time, and end time for the simulation, followed by the
maximum and minimum time step size for use in synchronous coupling. Depending on which of the times
in the previous set of times has been reached at the end of the current time step, many of the new times will
be the same as the corresponding time in the previous set. This message should be acknowledged with a
message containing the task identifier of the receiving task. This process of checking for the production of
output, the production of output if indicated, and the receipt of a new set of times if needed occurs at the
end of each time advancement until the simulation reaches the end time specified by the PVMEXEC
program. When the local simulation time reaches the end time for the simulation, the simulation code is
expected to terminate after the production of output without listening to receive a message with message
tag 8000 in the same way that it would terminate if it reached the end of a simulation while being executed
in uncoupled mode.

3.2.1.2 Time Step Selection for Synchronous Coupling

After the output and aysnchronous coupling control logic described in the previous section has been
executed, the time step size is determined for synchronous coupling. After the code determines the time
step size that it wants to use for the next time step advancement based on its own internal time step
selection algorithm, it sends this value (as a real number) to the PVMEXEC program in a message with
message tag 8001 if it is participating in synchronous coupling (a code may be participating in
synchronous coupling, in asynchronous coupling, or both types of coupling to different other simulation
codes). This message must contain an integer specifying the task identifier of the simulation code followed
by the value of the time step desired (as a real number). The PVMEXEC program will determine the
synchronous time step size based on the values reported by all of the codes participating in synchronous
coupling. The time step is chosen by halving or doubling the current time step size (limited by the user
input maximum and minimum time step sizes) so that it is the largest value just below the minimum of the
time steps requested by the code participating in synchronous coupling. This global time step size is sent to
the synchronously coupled codes in a return message with message tag 8001. This message will contain
the following four real values: the time step size to be used by all codes participating in synchronous

17

coupling, a new major edit time, a new minor edit time, and a new plot time. The new edit times are
included in the time step message so that the PVMEXEC program may request output at the end of every
time step advancement. The ability to produce output at the end of every time step has been adapted from

the RELAP5-3D© code.

3.2.2 Data Exchanges During Time Steps

The data exchanges during the transient computations for the several types of synchronous coupling
are described in the following sections.

All codes participating in synchronous coupling, either synchronous explicit thermal-hydraulic
coupling, semi-implicit thermal-hydraulic coupling, or control systems coupling, are required to send a
message with message tag 10000 to the PVMEXEC program at the end of the thermal-hydraulic portion of
their computations. The order of the computations in each couled code is assumed to be thermal-hydraulic
computation, then kinetics computations, then control system computations (this is the order of

computations in RELAP5-3D©). Only a failure in the thermal-hydraulic computations can cause a failure
of a coupled computation, subsequent backup, and retry of the advancement. The kinetics and control
systems computations are assumed to always be successful and no failure and backup logic is provided for
these types of computations. The message with message tag 10000 must contain two integer values, the
first integer is the task identifier of the sending task followed by a status flag. This status flag specifies
whether the thermal-hydraulic portion of their time step advancement has been successful or whether the

code wishes to repeat the advancement. RELAP5-3D© may want to repeat the advancement for any
number of reasons like excessive mass error during the time step advancement, a velocity flip-flop during
the advancement, etc. A value of zero denotes that the advancement was successful and a value greater
than zero represents an ‘error’ condition and requests either a time step repeat or a simulation termination.
The ‘error’ codes understood by the PVMEXEC code are values of one and two that denotes that the code
wishes to repeat the time step with a smaller time step size and values greater than two that denote that the
code wishes to repeat the time step with the same time step size. A value of one denotes that the
computations may continue even if the reduced time step size to be used during the repeat is the minimum
time step size while a value of two denotes that the code only wishes to repeat the time step if the current
time step size is greater than the minimum time step size (the time step size can only be reduced to the
minimum time step size and it would be futile to repeat the advancement if the time step size were already

at the minimum time step size). RELAP5-3D© can continue computations at the minimum time step size
for excessive mass error during the time step (status flag equals one) but must stop if a water property
failure occurs at the minimum time step size (status flag equals two). A value of six denotes the the code
cannot continue with any time step size however small and that the coupled computation should be
terminated. The PVMEXEC program will reply with a message with message tag 10000 that contains an
integer variable specifying a global success flag. A value of zero for the global success flag denotes that
the time step was successful and that all of the codes participating in synchronous coupling should proceed
with the remainder of their computations for the time step. A value greater that zero denotes that the time
step advancement has been unsuccessful for some reason and must be repeated. The codes that are
participating in synchronous coupling are expected to do whatever is necessary for them to prepare for a

18

repeated attempt of the time step advancement if the global success flag is greater than zero. If the global
success flag indicates a failed attemped advancement, the coupled codes are expected to proceed to the
time step selection logic, choose a new time step size for the next attempt at the advancement, and to send
their requested time step size to PVMEXEC in messages with message tag 8001. The global time step size
for the next attempt at the advancement is chosen as explained in Section 3.2.1.2.

If the advancement is successful, additional messages are exchanged between the PVMEXEC
program and the several coupled codes. The messages for each type of synchronous coupling are described
in the following subsections.

3.2.2.1 Explicit Thermal-hydraulic Coupling

The additional data exchanges for explicit thermal hydraulic coupling are performed at the end of a
successful time step advancement just before the execution of the output control logic described in Section
3.1.3. The data exchanges are controlled by messages 8002, 8003, 8004, and 8005. Control messages 8002
and 8004 are exchanged with the PVMEXEC program each and every time step because these messages
control the data exchanges for synchronous explicit coupling. The actual data exchanges between the tasks
that are partipating in synchronous explicit coupling are as described in the Section 3.1.3 of this report that
describes the initialization of a coupled computation. Control messages 8003 and 8005 are exchanged with
the PVMEXEC program only if the local simulation time has reached the explicit coupling interval time
and the simulation code is partipating in aysnchronous explicit coupling. The data exchanges between the
tasks participating in asynchronous explicit coupling are as described in the Section 3.1.3 of the report
describing the initialization of a coupled computation.

3.2.2.1.1 Sequential Explicit Thermal-hydraulic Coupling

The data exchanges described above are performed at the end of the time step for all types of explicit
thermal-hydraulic coupling. Addtional computations and data exchanges are needed for sequential explicit
coupling, both synchronous and asynchronous. In sequential explicit coupling, the ’leader’ process
performs its advancement (or multiple advancements for asynchronous coupling) and sends the ’junction’
properties to the appropriate ’follower’ task. For synchronous sequential coupling, the values sent are the
values at the end of the time step. For asynchronous sequential coupling for the data items that are flow
rates of mass and energy through the ’junction’, the values sent must be the average value of the junction
flow rates over the multiple time steps that constitiute the current asynchronous coupling interval. This
means that the ’leader’ tasks must perform the averaging of the ’junction’ flow rates over the coupling
interval for asynchronous coupling. The ’follower’ task must wait and listen to receive the ’junction’
properties from the appropriate ’leader’ task before performing its thermal-hydraulic advancements, either
a single advancement for synchronous sequential coupling or a series of advancements to span the current
coupling interval for asynchronous coupling. The computation of ’junction’ flow rates ensures that the
total amount of mass and energy that leaves (or enters) the ’leader’ solution domain is the same as the
amount of mass and energy that enters (or leaves) the adjacent ’follower’ solution domain. The extra data
exchange between the ’leader’ task and its ’follower’ task are performed autonomously by the two
processes and not under the control of the PVMEXEC program. The exchange occurs after the ’leader’

19

process has completed its advancements and before the ’follower’ process begins its advancements. These
data excahnges are coordinated by the PVMEXEC process using 8004 and 8005 control messages for
synchronous and asynchronous explicitly coupled processes, respectively.

3.2.2.2 Semi-implicit Thermal-hydraulic Coupling

The data exchanges between tasks participating in semi-implicit coupling are autonomous in the
sense that they are not controlled by messages from the PVMEXEC program. Because semi-implicit
thermal-hydraulic coupling is synchronous by definition, the data exchanges are performed each and every
time step. The order of the data exchanges is determined by the role the individual simulation codes
perform in the semi-implicit coupling solution algorithm. The semi-implicit coupling algorithm defines a
one to one relationship between the semi-implicitly coupled processes whereas a task may be coupled
explicitly to any number of other tasks. In this one to one relationship, one task is designated as the
’master’ and the other task is denoted as the ’slave’ task. The slave task is the task that computes the flow
rates of mass and energy in the ’junctions’ between the two semi-implicitly coupled computational
domains. The master task is the task that determines the functional relationship between the boundary

pressures and the coupling ’junction’ flow rates (See Reference 10 for a description of the semi-implicit
coupling solution algorithm). Each task must determine whether it is the ’master’ process or the ’slave’
process if it is participating in semi-implicit thermal-hydraulic coupling. Once a time advancement has
begun, the ’master’ process computes the functional relationship between the boundary pressures and the
’junction’ flow rates (i.e., the boundary pressure coefficients) and sends these values to the appropriate
’slave’ process. It then must wait to receive the fluid flow rates in the several coupling ’junctions’ . The
’slave’ process must listen to receive the values of the pressure coefficients from the ’master’ process,
receive the data, and send an acknowledgement to the ’master’ process. Once the ’slave’ process has
received the boundary pressure coefficients, it can proceed with its solution. Once the ’slave’ process has
finished its advancement, it must send the ’junction’ flow rates to its ’master’ process. The master process
has been listening to receive the coupling ’junction’ flow rates while the ’slave’ process performs its
advancement. Once the master receives and acknowledges the coupling ’junction’ flow rates, it can
complete its advancement. These data exchanges are autonomous and are not controlled by the
PVMEXEC program. These two data exchanges constitute the ’indirect’ or ’implied’ data exchanges
mentioned in the initialization section of this report for semi-implicit thermal-hydraulic coupling. The
’direct’ data exchanges are performed at the end of the advancement. First the master process sends the
properties in the boundary ’volumes’ to the appropriate ’slave’ process and then listens to receive the
properties in the coupling ’junctions’ for its ’slave’ process. The ’slave’ task listens to receive the
properties in the boundary ’volumes’ from the ’master’ task. It then uses these data to compute the fluid
properties in the coupling ’junctions’ and sends these values to the appropriate ’master’ process. The data
in both messages are end of time step values. The variables to be exchanged for semi-implicit
thermal-hydraulic coupling are defined in Appendix C. Appendix C also lists the macros that can be used

to specify these variables to RELAP5-3D© in the 1005 and 1006 messages used during the initialization
phase of a semi-implicitly coupled simulation.

3.2.2.3 Kinetics Coupling

20

Kinetics coupling is a type of synchronous sequential explicit coupling, sequential in the sense that
the thermal-hydraulic advancements are performed first and then the kinetics advancements. It is a form of
explicit coupling in that the values computed by one task and sent to the other task are held constant while
being used by the other task to perform its advancement. As with semi-implicit coupling, each task
participating in kinetics coupling is assigned a specific role by the user and these roles determine the data
that is to be exchanged between the tasks and when the data are exchanged during the advancement.
Because each task in kinetics coupling knows it role, the data exchanges are autonomous and are not
controlled by the PVMEXEC program. Each task in kinetics coupling is either a ’client’ task or a ’server’
task. These names are arbitrary and only denote the roles that the tasks perform in kinetics coupling. The
’server’ task is the task that computes the power in the nuclear reactor core using some form of neutron
kinetics model, either a simple point kinetics model or a more complicated multi-dimensional kinetics
model. Once the tasks have begun a time step advancement, the ’client’ task computes the fluid properties
and heat structure temperatures in the reactor core using the power computed by the ’server’ task to
advance its thermal-hydraulic solution. The thermal-hydraulic advancement may be an uncoupled
advancement, an explicitly coupled advancement, or a semi-implicitly coupled advancement. The type of
thermal-hydraulic advancement is immaterial to kinetics coupling except that the thermal-hydraulic
advancement must be synchronous because the time step sizes must be the same for the thermal-hydraulic
advancement and the kinetics advancement (asynchronous kinetics coupling may be implemented in the
future). First the ’client’ task performs its thermal-hydraulic solution using the power computed by the
kineitcs solution that was performed at the end of the previous time step. It then sends the values of fluid
properties and heat structure temperatures in the appropriate core regions to the ’server’ process. The
’server’ process must listen to receive these data. It acknowledges receiving the data and then uses the data
in its computation of the reactor power. After the reactor power has been computed, it sends the
appropriate power data to the ’client’ process. The ’client’ process must listen to receive the power data
after receiving the acknowledgement to its sending the fluid property and heat structure data to the ’server’
process. It processes the data received from the ’server’ task and sends an acknowledgement to the ’server’
process. Both processes then process to the next stage of the advancement. These computations are
performed before any production of output or the determination of the time step size for the next
advancement.

3.2.2.4 Control Systems Coupling

Control systems coupling, like kinetics coupling, is a form of synchronous explicit coupling that is
performed after any thermal-hydraulic coupling and kinetics coupling. Like kinetics coupling and
semi-implicit thermal-hydraulic coupling, the data exchanges between tasks participating in control
systems coupling are autonomous and are not coordinated by the PVMEXEC program. The control

systems coupling has been implemented in RELAP5-3D© by a new type of control component. This new
control component can send data, receive data, or receive data after sending data. The control components

in RELAP5-3D© are advanced in time in numerical order. If a control component is a coupling component,
it first examines its data base to determine if it is to send data to another task. If it determines that it is to
send data to another task, it sends the appropriate data and then waits to receive an acknowledgement.
After receiving an acknowledgement, or if it determines that it is not expected to send data to another task,

21

it examines its data base to determine it it is to receive data from another task. If it determines that it is
expected to receive data from another task, it listens to receive the appropriate message from the other task.
Once it receives the message from the other task, it sends an acknowledgement to the sending task,
processes the data in the message and then proceeds to the processing of the next control component. The
same type of processing must be implemented in any code wanting to participate in control systems
coupling. Because the control systems coupling messages are autonomous, the user must be extremely
careful to order the control system computations to ensure that one task is listening while its counterpart is
sending and visa-versa so that deadlocks do not occur (e.g., both tasks are listening or both tasks are
sending at the same point in the control systems computations).

4 Summmary

The Application Programming Interface (API) for the coupling of several different simulation codes
as implemented by the PVMEXEC program has been described in the previous sections of this report. The

data that can be exchanged with RELAP5-3D© for the several different type of coupling are listed in
Appendix C..

5 References

1 C. Y. Paik and L. E. Hochreiter, Analysis of FLECHT SEASET 163-Rod Blocked Bundle Data
Using COBRA-TF, NUREG/CR-4166, US Nuclear Regulatory Commission, 1986.

2 The RELAP5 Code Development Team, RELAP5-3D Code Manuals, Vol I, II, IV, and V,
INEEL-EXT-98-00834, Idaho National Engineering and Environmental Laboratory, Revision
2.2, October 2003.

3 Safety Code Development Group, TRAC-PF1/MOD1: An Advanced Best-Extimate Computer
Program for Pressurizer Water Reactor Thermal-Hydraulic Analysis, LA-10157-MS,
NUREG/CR-3858, Los Alamos National Laboratory, July 1986.

4 J. W. Spore, et. al., TRAC-M/FORTRAN 90 (Version 3.0) Theory Manual, NUREG/CR-6724,
Los Alamos National Laboratory and Pennsylvania State University, July 2001.

5 P. J. Turinsky, R. M. K. Al-Chalabi, and P. Engrand, NESTLE: A Few-Group Neutron Diffusion
Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed Source
Steady State and Transient Problems, EGG-NRE-11406, Idaho National Engineering
Laboratory, June 1994.

6 T. Downar et al., PARCS: Purdue Advanced Reactor Core Simulator, PU/NE-98-26, Purdue
University, West Lafayette, IN, September 1998.

7 K. K. Murata et al., Code Manual for CONTAIN 2.0: A Computer Code for Nuclear Reactor
Containment Analysis, SAND97-1735, NUREG/CR-6533, Sandia National Laboratory,
December 1997.

22

8 R. O. Gauntt et al., MELCOR Computer Code Manuals: Version 1.8.5, SAND2000-2417,
NUREG/CR-6119, Sandia National Laboratory, October 2000.

9 A. Geist et al., PVM (Parallel Virtual Machine) User’s Guide and Reference Manual,
ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

10 W. L. Weaver, E. T. Tomlinson, D. L. Aumiller, “A Generic Semi-Implicit Coupling

Methodology for Use in RELAP5-3D©,” Nuclear Engineering and Design, 211, 2003, pp 13-26.

A-1

Appendix A Message Tags

This appendix lists all of the message tags used by the PVMEXEC program along which a short
description of the data in the message. Unless otherwise specified, the message specification is for the
message that is sent from the PVMEXEC program to the designated simulation task. For these messages,
the message acknowledgment is returned to the PVMEXEC in a message with the same message tag that
contains a single data item in the message, the task identifier of the task sending the acknowledgement.
Messages that are listed as pairs of send and receive messages with the same message tag define the
handshaking for that message.

Message Tag 1

W1(R) Task transient type (-). A value of zero means a synchronous task and a value of 1 means
an asynchronous task.

W2(R) Transient start time (s).

W3(R) Transient restart time (s)

W4(I) Not used (RELAP5-3D specific).

W5(I) Length of string containing simulation name (-).

W6-(A) Simulation name (-).

Message Tag 2

W1(I) Number of threads for multi-threaded simulation codes (-).

Message Tag 1000

W1(R) Global wait time (s).

W2(I) Debug flag (-).

Message Tag 1001

W1(I) Number of explicit send messages.

W2(I) Number of explicit receive messages.

Message Tag 1002

W1(I) Message tag (-).

A-2

W2(I) Task identifier of task receiving message (-).

W3(I) Message transient type (-). Zero means synchronous message, one means asynchronous
message.

W4(I) Explicit coupling type (-). A value of -1 means parallel explicit coupling, a value of 0
means ‘leader’ in sequential explicit coupling, and a value of 1 means ‘follower’ in
sequential explicit coupling.

W5(R) Wait time for acknowledgement (s).

W6(I) Length of character string defining thermal-hydraulic data to be sent for explicit
coupling(-).

W7-(A) Character string defining thermal-hydraulic data to be sent for explicit coupling.

Message Tag 1003

W1(I) Message tag (-).

W2(I) Task identifier of task sending message (-).

W3(I) Message transient type (-). Zero means synchronous message, one means asynchronous
message.

W4(I) Explicit coupling type (-). A value of -1 means parallel explicit coupling, a value of 0
means ‘leader’ in sequential explicit coupling, and a value of 1 means ‘follower’ in
sequential explicit coupling.

W5(R) Wait time to receive message (s).

W6(I) Length of character string defining thermal-hydraulic data to be received for explicit
coupling (-).

W7-(A) Character string defining thermal-hydraulic data to be received for explicit coupling.

Message tag 1004

W1(I) Number of send messages for semi-implicit coupling.

W2(I) Number of receive messages for semi-implicit coupling.

Message tag 1005

W1(I) Message tag (-).

A-3

W2(I) Task identifier of task receiving the message (-).

W3(R) Wait time for the message acknowledgment (s).

W4(I) Length of character string defining the thermal-hydraulic data to be sent for semi-implicit
coupling (-).

W5-(A) Character string defining the thermal-hydraulic data to be sent for semi-implicit coupling.

Message tag 1006

W1(I) Message tag (-).

W2(I) Task identifier of task sending the message (-).

W3(R) Wait time to receive the message (s).

W4(I) Length of character string defining the thermal-hydraulic data to be received for
semi-implicit coupling (-).

W5-(A) Characte r string defining the thermal-hydraulic data to be received for semi-implicit
coupling(-).

Message tag 1007

W1(I) Number of send messages for kinetics coupling.

W2(I) Number of receive messages for kinetics coupling.

Message tag 1008

W1(I) Message tag (-).

W2(I) Task identifier of task receiving the kinetics message (-).

W3(R) Wait time to receive the message acknowledgment (s).

W4(I) Length of character string defining the kinetics data to be sent(-).

W5-(A) Character string defining the kinetics data to be sent.

Message tag 1009

W1(I) Message tag (-).

W2(I) Task identifier of task sending the kinetics message (-).

A-4

W3(R) Wait time to receive the message (s).

W4(I) Length of character string defining kinetics data to be received (-).

W5-(A) Character string defining kinetics data to be received.

Message tag 1010

W1(I) Number of send messages for control system coupling.

W2(I) Number of receive messages for control system coupling.

Message tag 1011

W1(I) Message tag (-).

W2(I) Task identifier of task receiving the control system message (-).

W3(R) Wait time to receive the message acknowledgment (s).

W4(I) Length of character string defining the control system data to be sent (-).

W5-(A) Character string defining the control system data to be sent.

Message tag 1012

W1(I) Message tag (-).

W2(I) Task identifier of task sending the control system message (-).

W3(R) Wait time to receive the control system message (s).

W4(I) Length of character string defining the control system data to be received (-).

W5-(A) Character string defining the control system data to be received.

Message tag 7000

W1(A) Fixed length string containing name of executable file for simulation task.

W2(A) Fixed length string containing command line parameters for simulation task.

W3(A) Fixed length string containing the name of the host in the virtual machine on which the
execute the task.

W4(A) Fixed length string containing the name of the output file for the simulation task.

A-5

W5(I) Debugging flag (-).

Message tag 7001

W1(I) Task identifier of PVMEXEC task (-).

Message tag 8000

W1(R) Time for next minor edit (s).

W2(R) Time for next plot output (s).

W3(R) Time for next major edit (s).

W4(R) Time for next restart output (s).

W5(R) Time for next explicit data exchange (s).

W6(R) End time of transient (s).

W7(R) Maximum time step size for synchronously coupled tasks (s).

W8(R) Minimum time step size for synchronously coupled tasks (s).

 PVMEXEC receive / analysis code send message tag 8001

W1(R) Desired time step size for synchronously coupled simulation task sending the message (s).

PVMEXEC send / analysis code receive message tag 8001

W1(R) Global time step size for synchronously coupled simulation tasks (s).

W2(R) Current time for a major edit (s).

W3(R) Current time for a minor edit (s).

W4(R) Current time for a plot record (s).

Message tag 8002

W1(I) Task identifier of explicitly coupled task that is to send data to other explicitly coupled
tasks for synchronous parallel explicit coupling. (s)

Message tag 8003

A-6

W1(I) Task identifier of explicitly coupled task that is to send data to other explicitly coupled
tasks for asynchronous parallel explicit coupling (s).

Message tag 8004

W1(I) Task identifier of explicitly coupled task that is to send data to other explicitly coupled
tasks for synchronous sequential explicit coupling (-).

Message tag 8005

W1(I) Task identifier of explicitly coupled task that is to send data to other explicitly coupled
tasks for asynchronous sequential explicit coupling. (-)

Message tag 9000

W1(I) Task identifier of task sending message (-).

W2(I) Initialization status flag for task (-).

W3(I) Run status flag for task (-).

Message tag 9001

W1(I) Global initialization flag (-).

W2(I) Global run status flag (-).

Receive message tag 10000

W1(I) Task identifier of simulation task sending the message (-).

W2(I) Success flag for synchronously coupled task (-).

Send message tag 10000

W1(I) Global success flag (-).

Message tag 10001

W1(I) Task identifier of simulation code that has failed (-).

Message tag 10002

W1(I) Task identifier of simulation task that has exceeded its wait time for a message from
another simulation task (-).

A-7

Message tag 10003

W1(I) Shutdown flag (-).

A-8

B-1

Appendix B
Order of Messages

This appendix lists the messages sent and received by the PVMEXEC program. Also listed are the
messages between the several simulation codes that are not coordinated by the PVMEXEC program. The
messages are listed in the order that they are sent for the two phases of a coupled computation, the
initialization phase and the transient phase. The original message is described, and the acknowledgment is
implied. Acknowledgments are contained in messages with the same message tag where the single data
item in the message is the task identifier of the task asknowledging the receipt of the message. Figure
2.3-1 shows the sequence of messages for the transient phase of a coupled computation.

1 Initialization Phase Messages
The messages sent by the PVMEXEC program to the coupled simulation codes during the

initialization phase of a coupled computation are listed in the order that they are sent. The contents of the
messages are listed in Appendix A.

1. Message 7001. This message is sent to all coupled simulation codes, regardess of the type
of coupling in which they are participating.

2. Message 1. This message is sent to all coupled simulation codes

3. Message 2. This message is sent to all coupled simulation codes.

4. Message 1000. This message is sent to all coupled simulation codes.

5. Message 1001. This message is sent to all coupled simulation codes.

6. Message 1002. This message is only sent the simulation codes participating in
synchronous, parallel, explicit thermal-hydraulic coupling.

7. Message 1003. This message is only sent the simulation codes participating in
synchronous, parallel, explicit thermal-hydraulic coupling.

8. Message 1004. This message is sent to all coupled simulation codes.

9. Message 1005. This message is only sent the simulation codes participating in
semi-implicit thermal-hydraulic coupling.

10. Message 1006. This message is only sent the simulation codes participating in
semi-implicit thermal-hydraulic coupling.

11. Message 1007. This message is sent to all coupled simulation codes.

B-2

12. Message 1008. This message is only sent to simulation codes participating in kinetics
coupling.

13. Message 1009. This message is only sent to simulation codes participating in kinetics
coupling.

14. Message 1010. This message is sent to all coupled simulation codes.

15. Message 1011. This message is only sent to simulation codes participating in control
systems coupling.

16. Message 1012. This message is only sent to simulation codes participating in control
systems coupling.

17. Message 8002. This message is only sent the simulation codes participating in
synchronous, parallel, explicit thermal-hydraulic coupling.

18. Message 8003. This message is only sent the simulation codes participating in
asynchronous, parallel, explicit thermal-hydraulic coupling.

19. Message 8004. This message is only sent the simulation codes participating in
synchronous, sequential, explicit thermal-hydraulic coupling.

20. Message 8005. This message is only sent the simulation codes participating in
asynchronous, sequential, explicit thermal-hydraulic coupling.

21. Initialization message for kinetics coupling. The initialization messages for kinetics
coupling have the same message tags and contents as the kinetics messages for transient
kinetics coupling. The message tags for these messages lie in the range 1-999. These
messages are autonomous messages not coordinated by the PVMEXEC program. They
are sent between the tasks participating in kinetics coupling. The message is from the
’server’ process to the ’client’ process.

22. Initialization messages for semi-implicit coupling. The initialization messages for
semi-implicit coupling have the same message tags and contents as the direct messages for
semi-implcit coupling. The message tags for these messages lie in the range 1-999. These
messages are autonomous messages not coordinated by the PVMEXEC program. They
are sent between the tasks participating in semi-implicit coupling. The order of these
messages depends upon the role that the simulation code sending the message is playing,
i.e., the ’master’ or ’slave’ roles for semi-implicit coupling. The simulation code
portraying the ’master’ role sends its message first and then the simulation code playing
the ’slave’ role sends its message.

23. Initialization messages for kinetics coupling. The initialization messages for kinetics
coupling have the same message tags and contents as the kinetics messages for transient
kinetics coupling. The message tags for these messages lie in the range 1-999. These

B-3

messages are autonomous messages not coordinated by the PVMEXEC program. They
are sent between the tasks participating in kinetics coupling. The order of these messages
depends upon the role that the simulation code sending the message is playing, i.e., the
’client’ or ’server’ roles for kinetics coupling. The simulation code portraying the ’client’
role sends its message first and then the simulation code playing the ’server’ role sends its
message after initializing its kinetics model using the data from the ’client’ task.

24. Message 9000. This message is received from all coupled simulation codes. It contains the
initialization status of the simulation tasks. The global initialization status is computed
from the data in these messages and is and sent to all of the coupled simulation codes.

25. Message 9001. This message is sent to all coupled simulation codes. It contains the global
run status and is only sent if the global initialization status indicates a successful
initialization of all coupled simulation codes.

2 Transient Phase Messages
The messages sent by the PVMEXEC program for the transient phase of a coupled computation are

listed in the order that they are sent by the PVMEXEC program. The contents of the messages are listed in
Appendix A. Messages are sent at several different times during the time step advancements. The initial
transient messages are sent to all coupled tasks at the beginning of the first time step of a coupled
simulation. Synchronous messages are sent to every task participating in synchronous coupling at the end
of every time step. Finally, asynchronous messages are sent to asynchronously coupled tasks at the end of
the last time step of a coupling interval and whenever a restart record is to be written to the restart file. The
messages will be described separately.

2.1 Initial Transient Messages
The initial transient messages are sent to all coupled simulation codes based of the type of coupling

in which they are participating.

1. Message 8002. These messages are sent to all simulation codes participating in
synchronous, parallel, explicit thermal-hydraulic coupling.

2. Message 8003. These messages are sent to all simulation codes participating in
asynchronous, parallel, explicit thermal-hydraulic coupling.

3. Message 8004. These messages are sent to all simulation codes participating in
synchronous, sequential, explicit thermal-hydraulic coupling.

4. Message 8005. These messages are sent to all simulation codes participating in
asynchronous, sequential, explicit thermal-hydraulic coupling.

5. Message 8000. This message is sent to all coupled simulation codes

6. Message 8001.This message is received from all simulation codes participating in
synchronous coupling. Its contain the desired time step size for each code. After the

B-4

global time step is computed, it is sent to all of the coupled codes participating in
synchronous coupling.

2.2 Messages During Time Step
There are several different sets of autonomous messages that are sent during the course of a time step

advancemet. These messages are sent between the participating tasks and are not coordinated by the
PVMEXEC program. The first sets of messages are for thermal-hydraulic coupling, followed by messages
for kinetics coupling, followed by messages for control systems coupling. Thermal-hydraulic messages are
divided into messages for semi-implicit thermal-hydraulic coupling and for sequential, explicit
thermal-hydraulic coupling. The messages are listed in the order that they are sent. The message tags for
these messages are assigned by the PVMEXEC program as part of the initialization phase of the coupled
computation.

1. Indirect semi-implicit messages. The message tags for these message lie in the range
2001-2999. These messages are exchanged by simulation codes participating in
semi-implicit coupling. First, the ’master’ task computes the pressure coefficients and
sends them to the ’slave’ task. The ’slave’ task uses the pressure coefficients to compute
the flow rates in the coupling junctions and sends these flow rates to the ’master’ task.
This completes the exchange of indirect semi-implicit messages.

2. Direct semi-implicit messages. The message tags for these messages lie in the range
1-999. These messages are exchanged between simulation codes participating in
semi-implicit coupling after the thermal-hydraulic solution for the time step has been
completed by both the ’master’ and ’slave’ tasks. First, the ’master’ task sends the fluid
conditions in the coupling volumes. Then, the ’slave’ task computes the fluid conditions
in the coupling junctions and sends them to the ’master’ task.

3. Sequential leader message. The message tag for this message lies in the range 1-999. The
’leader’ in sequential, explicit thermal-hydraulic coupling sends the average flow rates in
the coupling junctions to the ’follower’ task at the end of the last time step for the explicit
coupling interval.

4. Sequential follower message. The ’follower’ task waits at the beginning of the first time
step of an explicit coupling interval to receive the average flow rates in the coupling
junctions before advancing its thermal-hydraulic solution through the explicit coupling
interval.

5. Kinetics messages. The message tags for these messages lie in the range 1-999. The
kinetics messages are exchanged after the thermal-hydraulic portion of the time step
advancement have been completed. First, the simulation code portraying the ’client’ role
in kinetics coupling sends its messages to the simulation code portraying the ’server’ role
in kinetics coupling. The ’server’ task computes the reactor power using the data from the
’client’ task. Finally, the ’server’ task sends the power data to the ’client’ task.

6. Control system messages. The message tags for these messages lie in the range 1-999.
Control system messages are exchanged after the thermal-hydraulic and kinetics portions

B-5

of the computations for a time step advancement have been completed. The messages are
sent in the order specified in the input data for the PVMEXEC program.

2.3 Messages At End Of TIme Step
The messages sent by or received by the PVMEXEC code at the end of a time step depend on the

type of coupling, i.e. synchronous coupling or asynchronous coupling. The messages for synchronous
coupling will be described first and then the messages for asynchronous coupling.

2.3.1 Synchronous Coupling

Four types of messages are sent at the end of a time step to simulation codes that are participating in
synchronous coupling. These types of messages are; 1) advancement status message, 2) data exchange
control messages, 3) output control messages, and 4) time step control messages. The first type of message
is:

1. Message 10000. This message is received by the PVMEXEC program from each of the
coupled simulation codes participating in synchronous coupling. It contains the status flag
for the thermal-hydraulic portion of the attempted advancement. The global status flag is
determined for the individual status flags and sent to all of the simulation codes
participating in synchronous coupling. The flag indicates whether the thermal-hydraulic
portion of the advancement was successful or not successful.

The data exchange control messages are only sent at the end of a successful advancement;

1. Message 8002. These messages are sent to all simulation codes participating in
synchronous, parallel, explicit thermal-hydraulic coupling.

2. Message 8004. These messages are sent to all simulation codes participating in
synchronous, sequential, explicit thermal-hydraulic coupling.

The third type of message is a output control message. It is only sent to the simulation codes
participating in synchronous coupling at the end of a successful advancement. This message is sent
whenever the current time is an output time. The output times are the times at which minor edits, plot
records, major edit, and restart records are to be produced by the simulation codes. The message contains a
new set of output times;

1. Message 8000. This message is sent to all simulation codes participating is synchronous
coupling at output time.

The last type of message for synchronous coupling is the time step control message. It is received at
the end of every attempted advancement, successful or not. If the advancement has been successful, the
messages contains the desired time step for the next advancemet. If the attemped advancement was
unsuccessful, the message contains the desired time step for the repeated attempt for the time step. In any
case, the message is received by the PVMEXEC program from each simulation code participating in
synchronous coupling. After the global time step size has been computed from the several desired time
step sizes, the global time step size is sent to all of the synchronously coupled codes. This message also
contains a set of three output times. The output times are the current time for a major edit, the current time
for a minor edit and the current time for the writing of plottabel out to the plot file.;

B-6

1. Message 8001. Time step control message.

2.3.2 Asynchronous Coupling.

There are two types of messages for asynchronous coupling; 1) data exchange control messages, and
2) output control messages.

Data exchange control messages are sent at the end of the last time step of a coupling interval to
simulation codes that are participating in asynchronous, explicit thermal-hydraulic coupling.

1. Message 8003. These messages are sent to all simulation codes participating in
asynchronous, parallel, explicit thermal-hydraulic coupling.

2. Message 8005. These messages are sent to all simulation codes participating in
asynchronous, sequential, explicit thermal-hydraulic coupling.

Output control messages are sent to all simulation codes participating in asynchronous coulpling.
Asynchronously coupled simulation codes only receive this message at the end of the last time step of an
explicit coupling intervals or at restart times.

1. Message 8001. This message contains a set of output times and the explicit coupling
interval time. One or more of the times in the message will be different from the set of
times in the provious output control message. Asynchronously coupled simulation codes
only honor the restart time and the explicit coupling interval..

B-7

.

Figure 2.3-1 Sequence of messages during a transient time step.

Explicit
Sequential

S-I
Master
Indirect

S-I
Slave

Indirect
S-I

Master
Direct

S-I
Slave
Direct

Explicit
Sequential

Kinetics
Client

Kinetics
Server

Control
System

8003
8004

8005
8000

8001

8002

#2

#3

#4

10000

Notes:

#1 Only at beginning of first time step

#2 Only for successful thermal-hydraulic advancement

#3 Only at beginning of explicit coupling interval

#4 Only at end of explicit coupling interval

8003
8004

8005
8000

8001

8002
#1

Above the line are messages with the executive, below the line at messages between processes

#2

Follower

Leader

B-8

C-1

Appendix C
RELAP5-3D© Coupling Data Items

This appendix describes the data that RELAP5-3D© can send or receive from another simulation
code. The appendix is divided into sections describing the data that can be exchanged with other codes for
the several different types of coupling.

1 Explicit Thermal-hydraulic Coupling

There are two ways to describe the data that RELAP5-3D© can exchange with other codes for
explicit thermal-hydraulic coupling. The first way is to enter pairs of descriptors for each data item. These

pairs of descriptors are the same as the descriptors used to tell RELAP5-3D© to add variables to its plot file
or to the minor edits. A complete description of these descriptors can be found in Section 4 of Appendix A

of Volume II of the RELAP5-3D© manual. The second way to specify data items is to specify a component
name and a volume or junction number in the component (the volume or junction number is not the packed
number used to specify the data items for the plot file but is the volume and junction number within the
component). If the component named is a volume type component, such as a single volume or time
dependent volume, a set of fifteen properties for the volume are entered into the database for explicit
thermal-hydraulic coupling as if they had been specified individually. The volume variables are pressure
(Pa) , vapor fraction (-), liquid fraction (-), vapor specific internal energy (J/kg), liquid specific internal

energy (J/kg), total mass quality of noncondensable gas (-), vapor density (kg/m3), liquid density (kg/m3),
vapor temperature (degrees K), liquid temperature (degrees K), and the mass qualities (-) of the five
individual noncondensable gases. If a junction component such as a single junction or a time dependent
junction is named, a set of fourteen fluid property variables and fifteen flow rates are entered into the
database for explicit thermal-hydraulic coupling as if they had been specified individually. The fluid
property variables are, vapor fraction (-), vapor density (kg/m3), vapor specific internal energy (J/kg),

vapor non condensable quality (-), vapor velocity (m/sec), liquid fraction (-), liquid density (kg/m3), liquid
specific internal energy (J/kg), liquid velocity (m/sec), and the mass qualities (-) of five individual non
condensable gases. The fifteen flow rate variables are total mass flow rate of non condensable gas (kg/sec),
the flow rate of vapor internal energy (J/sec), the flow rate of liquid internal energy (J/sec), the mass flow

rate of vapor (kg/sec), the mass flow rate of liquid (kg/sec), the volumetric flow rate of vapor (m3/sec), the

volumetric flow rate of liquid (m3/sec), the flow rate of vapor enthalpy (J/sec), the flow rate of liquid
enthalpy (J/sec), the total flow rate of enthalpy in the noncondensable gases (J/sec), and the mass flow rates
(kg/sec) of the five individual non condensable gases. The units for the variables as SI, the internal system

of units for RELAP5-3D©. These macro definitions are used for both parallel and sequential explicit
thermal-hydraulic coupling.

The volume property macro expands to the following quantities:

W1(R) Pressure (Pa).

C-2

W2(R) Vapor fraction(-).

W3(R) Liquid fraction (-).

W4(R) Vapor specific internal energy (J/kg).

W5(R) Liquid specific internal energy (J/kg).

W6(R) Mass quality of noncondensable gas (-).

W7(R) Vapor density (kg/m3).

W8(R) Liquid density (kg/m3).

W9(R) Vapor temperature (°K).

W10(R) Liquid temperature (°K).

W11(R) Mass quality of first noncondensable gas(-).

W12(R) Mass quality of second noncondensable gas (-).

W13(R) Mass quality of third noncondensable gas (-).

W14(R) Mass quality of fourth noncondensable gas (-).

W15(R) Mass quality of fifth noncondensable gas (-).

The junction property macro expands to the following quantities:

W1(R) Junction vapor fraction (-).

W2(R) Junction vapor density (kg/m3)

W3(R) Junction specific internal energy (J/kg).

W4(R) Junction mass quality of noncondensable gas (-).

W5(R) Junction vapor velocity (m/s).

W6(R) Junction liquid fraction (-).

W7(R) Junction liquid density (kg/m3).

C-3

W8(R) Junction liquid specific internal energy (J/kg).

W9(R) Junction liquid velocity (m/s).

W10(R) Junction mass quality of first noncondensable gas (-).

W11(R) Junction mass quality of second noncondensable gas (-).

W12(R) Junction mass quality of third noncondensable gas (-).

W13(R) Junction mass quailty of fourth noncondensable gas (-).

W14(R) Junction mass quality of fifth noncondensable gas(-).

W15(R) Junction mass flow rate of noncondensable gas (kg/s).

W16(R) Junction flow rate of vapor internal energy (J/s).

W17(R) Junction flow rate of liquid internal energy (J/s).

W18(R) Junction flow rate of vapor (kg/s).

W19(R) Junction flow rate of liquid(kg/s).

W20(R) Junction volumetric flow rate of vapor (m3/s).

W21(R) Junction volumetric flow rate of liquid (m3/s).

W22(R) Junction flow rate of vapor enthalpy (J/s).

W23(R) Junction flow rate of liquid enthalpy (J/s).

W24(R) Junction flow rate of noncondensable enthalpy (J/s).

W25(R) Junction flow rateo of first noncondensable gas (Kg/s).

W26(R) Junction flow rate of second noncondensable gas (kg/s).

W27(R) Junction flow rate of third noncondensable gas (kg/s).

W28(R) Junction flow rate of fourth noncondensable gas (kg/s).

W29(R) Junction flow rate of fifth noncondensable gas(kg/s).

C-4

2 Semi-implicit Thermal-hydraulic Coupling.

The data items for semi-implicit coupling are specified solely by the use of macros. The user
specifies a component name and volume or junction number in the component. The macros are expanded
to lists of variables for two different kinds of messages, the direct messages and the indirect (or implied)
messages. The direct messages are exchanged at the end of the computations for semi-implicit coupling
and the indirect (or implied) messages are sent during to course of the computations for the semi-implicit
solution algorithm. The indirect messages are actually exchanged first during the time step advancement
while the direct messages are exchanged at the end of the advancement before the production of output and
time step selection. The direct messages specify volume fluid properties or junction fluid properties as
described for explicit thermal-hydraulic coupling. The volume fluid properties are the same fifteen
properties listed in the previous subsection of this appendix and are sent by the ’master’ process of the
semi-implicit coupling algorithm. The junction fluid properties are the set of fourteen junction fluid
properties listed in the previous subsection of this appendix and are sent by the ’slave’ process for the
semi-implicit coupling algorithm.

The volume property macro for the direct semi-implicit messages expands to the following
properties.

W1(R) Pressure (Pa).

W2(R) Vapor fraction(-).

W3(R) Liquid fraction (-).

W4(R) Vapor specific internal energy (J/kg).

W5(R) Liquid specific internal energy (J/kg).

W6(R) Mass quality of noncondensable gas (-).

W7(R) Vapor density (kg/m3).

W8(R) Liquid density (kg/m3).

W9(R) Vapor temperature (°K).

W10(R) Liquid temperature (°K).

W11(R) Mass quality of first noncondensable gas(-).

W12(R) Mass quality of second noncondensable gas (-).

C-5

W13(R) Mass quality of third noncondensable gas (-).

W14(R) Mass quality of fourth noncondensable gas (-).

W15(R) Mass quality of fifth noncondensable gas (-).

The junction property macro for direct semi-implicit coupling messages expands the the following
quantities:

W1(R) Junction vapor fraction (-).

W2(R) Junction vapor density (kg/m3)

W3(R) Junction specific internal energy (J/kg).

W4(R) Junction mass quality of noncondensable gas (-).

W5(R) Junction vapor velocity (m/s).

W6(R) Junction liquid fraction (-).

W7(R) Junction liquid density (kg/m3).

W8(R) Junction liquid specific internal energy (J/kg).

W9(R) Junction liquid velocity (m/s).

W10(R) Junction mass quality of first noncondensable gas (-).

W11(R) Junction mass quality of second noncondensable gas (-).

W12(R) Junction mass quality of third noncondensable gas (-).

W13(R) Junction mass quailty of fourth noncondensable gas (-).

W14(R) Junction mass quality of fifth noncondensable gas(-).

The data items for the indirect messages for volume components are the pressure coefficients for
each of the coupling volumes and are sent by the ’master’ process. The coefficients for a coupling volume
consist of a constant followed by sets of seven coefficients for each coupling junction, each set of seven
coefficients representing the derivatives of the pressure in the coupling volume with respect to flow rate of
noncondensable gas, with respect to the flow rate of vapor internal energy, with respect to the flow rate of
liquid internal energy, with respect to the mass flow rate of vapor, with respect to the mass flow rate of

C-6

liquid, with respect to the volumetric flow rate of vapor, and with respect to the volumetric flow rate of
liquid in the first coupling junction. The second set of seven coefficients represent the derivative of the
pressure in the coupling volume with respect to the seven flow rates in the second coupling junction, etc.
The full set of coefficients for the first coupling volume is followed by the set of coefficients for the second
coupling volume, etc., until the sets of coefficients for all of the coupling volumes had been specified.

The volume macro for indirect semi-implicit coupling messages expands to the following quantities
for each coupling volume:

W1(R) Pressure constant for coupling volume.

W2R) Derivative of pressure in coupling volume with respect to the flow rate of noncondensable
gas in the first coupling junction

W3(R) Derivative of pressure in the coupling volume with respect to the flow rate of vapor
internal energy in first coupling junction.

W4(R) Derivative of pressure in coupling volume with respect to the flow rate of liquid internal
energy in first coupling junction.

W5(R) Derivative of pressure in coupling volume with respect to flow rate of vapor in first
coupling junction.

W6(R) Derivative of pressure in coupling volume with respect to flow rate of liquid in first
coupling junction.

W7(R) Derivative of pressure in coupling volume with respect to volumetric flow rate of vapor in
first coupling junction.

W8(R) Derivative of pressure in coupling volume with respect to volumetric flow rate of liquid in
first coupling junction

W9-16(R) Derivatives of pressure in coupling volume with respect to flow rate in second coupling
junction.

W17-24(R) Derivatives of pressure in coupling volume with respect to flow rates in third coupling
junction.

.........

The data items for the indirect messages for junction components are the sets of seven flow rates for
each coupling junction as listed in a previous paragraph and are sent by the ’slave’ process in the
semi-implicit coupling algorithm.

C-7

The junction macro for indirect semi-implicit coupling messages expands to the following fifteen
quantities for each coupliing junction:

W1(R) Junction mass flow rate of noncondensable gas (kg/s).

W2(R) Junction flow rate of vapor internal energy (J/s).

W3(R) Junction flow rate of liquid internal energy (J/s).

W4(R) Junction flow rate of vapor (kg/s).

W5(R) Junction flow rate of liquid(kg/s).

W6(R) Junction volumetric flow rate of vapor (m3/s).

W7(R) Junction volumetric flow rate of liquid (m3/s).

W8(R) Junction flow rate of vapor enthalpy (J/s).

W9(R) Junction flow rate of liquid enthalpy (J/s).

W10(R) Junction flow rate of noncondensable enthalpy (J/s).

W11(R) Junction flow rateo of first noncondensable gas (kg/s).

W12(R) Junction flow rate of second noncondensable gas (kg/s).

W13(R) Junction flow rate of third noncondensable gas (kg/s).

W14(R) Junction flow rate of fourth noncondensable gas (kg/s).

W15(R) Junction flow rate of fifth noncondensable gas(kg/s).

3 Kinetics Coupling

The data items to be exchanged for kinetics coupling may be specified using pairs of descriptors for
the individual data items to be exchanged or can be specified through the use of macros. The macros that

RELAP5-3D© understands for send messages are ’power’, ’zone’, ’heatstr’, ’table’, ’cntrlvar’, and the
name of a volume component. The macro name is followed by a component number. The component
number may be followed by an optional ’-’ and another component number. The optional ’-’ and additional
component number specify a range of component numbers for which data is to be sent. The macro names
’power’, ’table’, and ’cntrlvar’ are expanded to a list of the following variables; ’rkpow’ for total reactor
power, ’rkpowg’ for total reactor decay power, ’rkpowf’ for total reactor fission power, ’rkpowk’ for the

C-8

total power from the decay of fission products, and ’rkpowa’ for the total power from the decay of
actinides. If the macros ’table’ or ’cntrlvar’ are used, the five variables in the message have the same value
because there is only one source for the value, i.e., the value from the table or control variable. These three

macros are used to determine if RELAP5-3D© is the ’client’ process or the ’server’ task in kinetics

coupling. If RELAP5-3D© is to send the variables defined by these three macros, it is the ’server’ task in
kinetics coupling (i.e., it computes the reactor power using its kinetics model). These variables are used if
the ’server’ task is using a point kinetics model to describe the power in the reactor core. The macros

’zone’ and ’power’ are used if RELAP5-3D© is using a multi-dimensional model for the computation of

the reactor power and also designates that RELAP5-3D© is the ’server’ task in the coupled kinetics
simulation. In multi-dimensional kinetics, the reactor core is divided into a number of regions called zones
and the power in each zone is computed from the results of the solution of the kinetics model. The ’zone’
macro defines a list of the following variables; ’rkoztp’ for total reactor power is a kinetics zone, ’rkozfp’
for total fission power in a kinetics zone, ’rkozgp’ for total decay power in a kinetics zone’, ’rkozkp’ for
total power from the decay of fission products in a kinetics zone, and ’rkozap’ for the power from the
decay of actinides in a kinetics zone. If the macro name is ’heatstr’, the macro is expanded to a single data
item, the average temperature in the fuel portion of a heat structure (heat structure are used in

RELAP5-3D© to represent the fuel rods in the reactor core). The set of variables defined by the macro is
added to the kinetics coupling database for the first component of a component range, followed by the set
of variables for the second component in the component range, etc., until a list of variables has been
entered for each of the components listed in the range of component numbers. If the component identifier
is not a macro name it is assumed to be a volume component name. In this case the component name is
expanded to the following list of volume variables: ’voidf’ for liquid fraction, ’voidg’ for vapor fraction’,
’boron’ for soluble poison concentration, ’rho’ for fluid density, ’rhof’ for liquid density,’ rhog’ for vapor
density, ’tempf’ for liquid temperature, and ’tempg’ for vapor temperature. As with the other macros, a
range of component number may be specified.

The ’power’ macro expands to the following five variables:

W1(R) Total reactor power (W).

W2(R) Total reactor decay power (W).

W3(R) Total reactor fission power (W).

W4(R) Total reactor power from decay of fission products (W).

W5(R) Total reactor power from decay of actinides (W).

The ’zone’ macro expands to the following five variables:

W1(R) Total reactor power in kinetics zone (W).

C-9

W2(R) Total reactor decay power in kinetics zone (W).

W3(R) Total reactor fission power in kinetics zone (W).

W4(R) Total reactor power from decay of fission products in kinetics zone (W).

W5(R) Total reactor power from decay of actinides in kinetics zone (W).

The ’heatstr’ macro expands to the following quantity:

W1(R) Volume average temperature in heat structure (°K).

The volume properties macro for kinetics coupling expands to the following quantities:

W1(R) Volume liquid fraction (-).

W2(R) Volume vapor fraction (-).

W3(R) Solute concentration (ppm).

W4(R) Fluid density (kg/m3).

W5(R) Vapor density (kg/m3).

W6(R) Liquid density (kg/m3).

W7(R) Liquid temperature (°K).

W8(R) Vapor temperature (°K).

Some of the same macros used in send messages for kinetics coupling are used by RELAP5-3D© in
kinetics receive messages: ’power’, ’zone’, ’volume’, and ’heatstr’. The ’power’ and ’zone’ macros
expand to the same list of variables defined send messages. The use of these two macros in receive

messages designate that RELAP5-3D© is the ’client’ process in the coupled kinetics simulation. The
macro ’heatstr’ expands to a single value as explained in the previous section. The macro ’volume’
expands to the same list of variables as specified for volume components in the previous section. The

macros ’volume’ and ’heatstr’ are used internally in RELAP5-3D© to designate that the properties in the

messages are for volumes ot heat structures that are not part of the RELAP5-3D© thermal-hydraulic

solution domain but are part of the domain computed by the other coupled code. RELAP5-3D© needs to
know this so that it can reserve storage for these variables in its coupling database (they cannot be stored

in the regular database because they are not specified in the RELAP5-3D© input file, only by the receive

C-10

messages). The macro ’heatstr’ in receive messages must also be stored in the coupling database for the
same reason.

4 Control System Coupling

The data items for control systems couling are specified by pairs of descriptors. The descriptors that

are understood by RELAP5-3D© for control systems coupling are the same descriptors that are used to

specify the plot and minor edit variables in RELAP5-3D©. These descriptors may specify any variable that

can be used as an input variable to the control blocks in RELAP5-3D©. If a RELAP5-3D© control
component is specified in a send message, then the output of the control component is to be sent to the

other task. If a RELAP5-3D© control component is specified in a receive message, the value received from
the other task is to be used as an input to the designated control component.

